organic papers

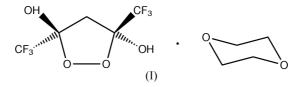
Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Michael H. Dickman

Department of Chemistry, Georgetown University, Box 571227, Washington, DC 20057-1227, USA

Correspondence e-mail: michaeld42@aol.com


Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.003 Å R factor = 0.053 wR factor = 0.105 Data-to-parameter ratio = 13.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The 1,2-dioxolane of the title adduct, $C_5H_4F_6O_4\cdot C_4H_8O_2$, is produced slowly by air oxidation of diaquabis(1,1,1,5,5,5hexafluoropentane-2,4-dionato)manganese(II) in the presence of 1,4-dioxane. This dioxolane is formally derived from the addition of H_2O_2 to 1,1,1,5,5,5-hexafluoropentane-2,4dione. The hydroxy groups of the dioxolane are hydrogen bonded to dioxane to form an alternating chain structure. Received 20 June 2001 Accepted 21 June 2001 Online 29 June 2001

Comment

An attempt to synthesize bis(1,4-dioxane)bis(hfac)manganese(II) (hfac = 1,1,1,5,5,5-hexafluoropentane-2,4dionato) resulted in the isolation of diaquabis(1,1,1,5,5,5hexafluoropentane-2,4-dionato)manganese(II) 1.5-(1,4-dioxane) solvate, identified by an X-ray crystal structure analysis. A sample of this solvate kept in a sealed glass vial was observed, after several months, to deposit colourless crystals near the top of the vial, apparently by sublimation. Structure analysis of these crystals revealed the title 1,2-dioxolane, (I), hydrogen bonded to 1,4-dioxane (Fig. 1). The two hydroxy groups are hydrogen bonded to different dioxane molecules to form a chain in which dioxane and dioxolane alternate.

Presumably autoxidation of 1,4-dioxane forms peroxide which then reacts with $Mn(hfac)_2(H_2O)_2$ to produce 1,2dioxolane. Fluorinated organic peroxides have been found useful as synthetic reagents (Sawada, 1996).

O1 and O2 are out of the C2–C3–C4 plane by -0.295 (5) and 0.361 (5) Å, respectively. Structure reports of 1,2-dioxolanes in which the dioxolane ring is not fused to other rings are relatively uncommon. Among these are 3,3'-vinylidene-di-(5phenyl-1,2-dioxolane) and 4-(5'-phenyl-1',2'-dioxolan-3'-yl)-3vinyl-1,2-dioxolane (Feldman *et al.*, 1986); bis(3,5,5-trimethyl-1,2-dioxolan-3-yl) peroxide (Ramm, 1996); and two steroid derivatives (Hernández *et al.*, 1996; Boto *et al.*, 1998).

 \odot 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

0636

Experimental

Mn(hfac)₂(H₂O)₃ was made by a standard procedure (Morris *et al.*, 1968). Mn(hfac)₂(H₂O)₃ (0.5 g) was added to a mixture of *n*-heptane (50 ml) and 1,4-dioxane (5 ml). This mixture was distilled until nearly 5 ml of the solution had evaporated. The remaining yellow solution was allowed to cool at room temperature in a loosely covered beaker. After about a day, yellow crystals formed. These were identified as Mn(hfac)₂(H₂O)₂ 1.5-(1,4-dioxane) solvate. This compound was isolated by filtration and stored in a sealed glass vial. Colourless crystals of the title formula formed slowly over a period of months.

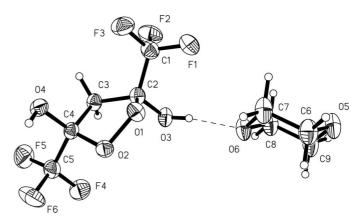
Crystal data

$C_{5}H_{4}F_{6}O_{4} \cdot C_{4}H_{8}O_{2}$ $M_{r} = 330.19$ Monoclinic, $P2_{1}/c$ $a = 8.1997 (3) Å$ $b = 18.2477 (6) Å$ $c = 8.8871 (3) Å$ $\beta = 95.798 (1)^{\circ}$ $V = 1322.94 (8) Å^{3}$	$D_x = 1.658 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 5471 reflections $\theta = 2.2-28.3^{\circ}$ $\mu = 0.19 \text{ mm}^{-1}$ T = 173 (2) K Rod, colourless $0.26 \times 0.15 \times 0.15 \text{ mm}$
Z = 4	$0.36 \times 0.15 \times 0.15 \text{ mm}$
Data collection	
CCD area-detector diffractometer ω scans	$R_{\rm int} = 0.059$ $\theta_{\rm max} = 28.3^{\circ}$

 $\begin{array}{l} h = -10 \rightarrow 10 \\ k = -23 \rightarrow 23 \end{array}$

 $l=-11\rightarrow 11$

 ω scans 14 324 measured reflections 3163 independent reflections 1972 reflections with $I > 2\sigma(I)$


Refinement

 $\begin{array}{ll} \mbox{Refinement on } F^2 & w = 1/[\sigma^2(F_o^2) + (0.026P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.053 & where \ P = (F_o^2 + 2F_c^2)/3 \\ wn (F^2) = 0.105 & where \ P = (F_o^2 + 2F_c^2)/3 \\ S = 1.04 & (\Delta/\sigma)_{\rm max} < 0.001 \\ 3163 \ reflections & \Delta\rho_{\rm max} = 0.21 \ e \ {\rm \AA}^{-3} \\ 238 \ parameters & \Delta\rho_{\rm min} = -0.27 \ e \ {\rm \AA}^{-3} \\ All \ H-atom \ parameters \ refined & \end{array}$

Table 1

Selected geometric parameters (Å, °).

C1-F3	1.330 (3)	C5-F4	1.329 (3)
C1-F1	1.336 (3)	C5-F6	1.331 (3)
C1-F2	1.338 (3)	C5-F5	1.335 (3)
C1-C2	1.530 (3)	C6-O5	1.433 (3)
C2-O3	1.384 (3)	C6-C7	1.494 (4)
C2-O1	1.431 (2)	C7-O6	1.442 (3)
C2-C3	1.522 (3)	C8-O6	1.440 (3)
C3-C4	1.523 (3)	C8-C9	1.493 (4)
C4-O4	1.381 (2)	C9-O5	1.438 (3)
C4-O2	1.429 (2)	01-02	1.472 (2)
C4-C5	1.529 (3)		~ /
O1-C2-C3	105.85 (17)	C2-O1-O2	103.30 (13)
C2-C3-C4	102.91 (17)	C4-O2-O1	103.40 (14)
O2-C4-C3	105.40 (16)		
O1-C2-C3-C4	-12.4(2)	C3-C4-O2-O1	36.48 (19)
C2-C3-C4-O2	-15.2(2)	C2-O1-O2-C4	-44.83 (18)
C3-C2-O1-O2	34.6 (2)		

Figure 1

A view of the title structure. Displacement ellipsoids are drawn at the 50% probability level.

Table 2

1

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$03-H1O3\cdots O6$	0.85 (3)	1.85 (3)	2.688 (2)	170 (3)
$04-H1O4\cdots O5^{i}$	0.86 (3)	1.81 (3)	2.663 (2)	173 (3)

Symmetry codes: (i) $x - 1, \frac{3}{2} - y, \frac{1}{2} + z$.

H atoms were refined isotropically in observed positions. C–H distances ranged from 0.94 (2) to 1.06 (3) Å and O–H distances were 0.85 (3) and 0.86 (3) Å.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SHELXTL* (Bruker, 1998); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

References

Boto, A., Hernández, R., Velázquez, S. M., Suárez, E. & Prangé, T. (1998). J. Org. Chem. 63, 4697–4705.

- Bruker (1998). *SMART* (Version 6), *SAINT* (Version 6) and *SHELXTL*. Bruker AXS Inc, Madison, Wisconsin, USA.
- Feldman, K. S., Simpson, R. E. & Parvez, M. (1986). J. Am. Chem. Soc. 108, 1328–1330.
- Hernández, R., Velázquez, S. M., Suárez, E. & Prangé, T. (1996). *Tetrahedron Lett.* **37**, 6409–6412.
- Morris, M. L., Moshier, R. W. & Sievers, R. E. (1968). *Inorg. Chem.* 2, 411–412. Ramm, M. (1996). Z. Kristallogr. 211, 660.

Sawada, H. (1996). Chem. Rev. 96, 1779-1808.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.